INSULIN LISPRO INJECTION

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use INSULIN LISPRO safely and effectively. See full prescribing information for INSULIN LISPRO.

INSULIN LISPRO injection, for subcutaneous or intravenous use

Initial U.S. Approval: 1996

Dosage and Administration (2.2) 11/2019
Warnings and Precautions (5.2) 11/2019

--- INDICATIONS AND USAGE ---

Insulin Lispro Injection is a rapid acting human insulin analog indicated to improve glycemic control in adults and children with diabetes mellitus. (1)

--- DOSAGE AND ADMINISTRATION ---

• See Full Prescribing Information for important administration instructions. (2.1, 2.2, 2.3, 2.4)
• Subcutaneous injection (2.2):
 • Administer Insulin Lispro Injection by subcutaneous injection into the abdominal wall, thigh, upper arm, or buttocks within 15 minutes before a meal or immediately after a meal.
 • Rotate injection sites to reduce risk of lipodystrophy and localized cutaneous amyloidosis.
• Continuous subcutaneous infusion (Insulin Pump) (2.2):
 • Administer Insulin Lispro Injection by continuous subcutaneous infusion using an insulin pump in a region recommended in the instructions from the pump manufacturer.
 • Rotate infusion sites to reduce risk of lipodystrophy and localized cutaneous amyloidosis.
• Intravenous Infusion (2.2):
 • Administer Insulin Lispro Injection by intravenous infusion ONLY after dilution and under medical supervision.
 • The dosage of Insulin Lispro Injection must be individualized based on the route of administration and the individual’s metabolic needs, blood glucose monitoring results and glycemic control goal. (2.3)
• Do not perform dose conversion when using the Insulin Lispro injection prefilled pens. The dose window shows the number of insulin units to be delivered and no conversion is needed. (2.1, 2.3)

--- DOSAGE FORMS AND STRENGTHS ---

Injection: 100 units/mL (U-100) is available as:
• 3 mL single-patient-use Insulin Lispro Injection® Jr.
• 3 mL single-patient-use Insulin Lispro Injection® KwikPen®

--- CONTRAINDICATIONS ---

• Do not use during episodes of hypoglycemia. (4)
• Do not use in patients with hypersensitivity to Insulin Lispro Injection or any of its excipients. (4)
--- WARNINGS AND PRECAUTIONS ---

Never share an Insulin Lispro Injection prefilled pen or syringe between patients, even if the needle is changed. (5.1)

Hyperglycemia or Hypoglycemia with Changes in Insulin Regimen: Make changes to a patient’s insulin regimen (e.g., insulin strength, manufacturer, type, injection site or method of administration) under close medical supervision with increased frequency of blood glucose monitoring. (5.2)

Hypoglycemia: May be life-threatening. Monitor blood glucose and increase monitoring frequency with changes to insulin dosage, use of glucose lowering medications, meal pattern, physical activity; in patients with renal or hepatic impairment; and in patients with hypoglycemia unawareness. (5.3, 7, 8.6, 8.7)

Hypoglycemia Due to Medication Errors: Accidental mix-ups between insulin products can occur. Instruct patients to check insulin labels before injection. (5.4)

Hypersensitivity Reactions: May be life-threatening. Discontinue Insulin Lispro injection, monitor and treat if indicated. (5.5)

Hypokalemia: May be life-threatening. Monitor potassium levels in patients at risk of hypokalemia and treat if indicated. (5.6)

Fluid Retention and Heart Failure with Concomitant Use of Thiazolidinediones (TZDs): Observe for signs and symptoms of heart failure; consider dosage reduction or discontinuation if heart failure occurs. (5.7)

Hyperglycemia and Ketoacidosis Due to Insulin Pump Device Malfunction: Monitor glucose and administer Insulin Lispro Injection by subcutaneous injection if pump malfunction occurs. (5.8)

--- ADVERSE REACTIONS ---

Adverse reactions associated with Insulin Lispro Injection include hypoglycemia, allergic reactions, injection site reactions, lipodystrophy, pruritus, and rash. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Eli Lilly and Company at 1-800-LillyRx (1-800-545-5979) or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

--- DRUG INTERACTIONS ---

• Drugs that Affect Glucose Metabolism: Adjustment of insulin dosage may be needed. (7.1, 7.2, 7.3)
• Anti-Adrenergic Drugs (e.g., beta-blockers, clonidine, guanethidine, and reserpine): Signs and symptoms of hypoglycemia may be reduced or absent. (5.3, 7.4)

--- USE IN SPECIFIC POPULATIONS ---

Pediatrics: Not studied in children with type 2 diabetes or in children with type 1 diabetes <3 years of age. (8.4)

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling

Revised: 2/2020
8.5 Geriatric Use
8.6 Renal Impairment
8.7 Hepatic Impairment

10 OVERDOSAGE

11 DESCRIPTION

12 CLINICAL PHARMACOLOGY
 12.1 Mechanism of Action
 12.2 Pharmacodynamics
 12.3 Pharmacokinetics

13 NONCLINICAL TOXICOLOGY
 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
 13.2 Animal Toxicology and/or Pharmacology

14 CLINICAL STUDIES
 14.1 Type 1 Diabetes – Adults and Adolescents
 14.2 Type 2 Diabetes – Adults
 14.3 Type 1 Diabetes – Pediatric and Adolescents
 14.4 Type 1 Diabetes – Adults Continuous Subcutaneous Insulin Infusion
 14.5 Type 1 Diabetes – Pediatric Continuous Subcutaneous Insulin Infusion

16 HOW SUPPLIED/STORAGE AND HANDLING
 16.1 How Supplied
 16.2 Storage and Handling
 16.3 Preparation and Handling
 16.4 Admixture for Intravenous Administration

17 PATIENT COUNSELING INFORMATION

* Sections or subsections omitted from the full prescribing information are not listed.

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE
Insulin Lispro Injection is a rapid acting human insulin analog indicated to improve glycemic control in adults and children with diabetes mellitus.

2 DOSAGE AND ADMINISTRATION

2.1 Important Administration Instructions
• Always check insulin labels before administration [see Warnings and Precautions (5.4)].
• Inspect Insulin Lispro Injection visually before use. It should appear clear and colorless. Do not use Insulin Lispro Injection if particulate matter or coloration is seen.
• Use Insulin Lispro Injection prefilled pens with caution in patients with visual impairment that may rely on audible clicks to dial their dose.
• Do NOT mix Insulin Lispro Injection with other insulins when administering using a continuous subcutaneous infusion pump.
• Do NOT perform dose conversion when using any Insulin Lispro Injection prefilled pens. The dose window shows the number of insulin units to be delivered and no conversion is needed.

2.2 Route of Administration
Subcutaneous Injection
• Administer the dose of Insulin Lispro Injection within fifteen minutes before a meal or immediately after a meal by injection into the subcutaneous tissue of the abdominal wall, thigh, upper arm, or buttocks. To reduce the risk of lipodystrophy and localized cutaneous amyloidosis, rotate the injection site within the same region from one injection to the next. Do not inject into areas of lipodystrophy or localized cutaneous amyloidosis [see Warnings and Precautions (5.2) and Adverse Reactions (6)].
• During changes to a patient's insulin regimen, increase the frequency of blood glucose monitoring [see Warnings and Precautions (5.2)].
• Insulin Lispro Injection administered by subcutaneous injection should generally be used in regimens with an intermediate- or long-acting insulin.
• The Insulin Lispro Injection KwikPen dials in 1 unit increments and delivers a maximum dose of 60 units per injection.
• The Insulin Lispro Injection Junior KwikPen dials in 0.5 unit increments and delivers a maximum dose of 30 units per injection.
Continuous Subcutaneous Infusion (Insulin Pump)
• Administer Insulin Lispro Injection by continuous subcutaneous infusion in a region recommended in the instructions from the pump manufacturer. Rotate infusion sites within the same region to reduce the risk of lipodystrophy and localized cutaneous amyloidosis. Do not inject into areas of lipodystrophy or localized cutaneous amyloidosis [see Warnings and Precautions (5.2) and Adverse Reactions (6)].
• During changes to a patient’s insulin regimen, increase the frequency of blood glucose monitoring [see Warnings and Precautions (5.2)].
• Follow healthcare professional recommendations when setting basal and meal time infusion rate.
• Do NOT dilute or mix Insulin Lispro Injection when administering by continuous subcutaneous infusion.
• Change Insulin Lispro Injection in the pump reservoir at least every 7 days.
• Change the infusion sets and the infusion set insertion site at least every 3 days.
• Do NOT expose Insulin Lispro Injection in the pump reservoir to temperatures greater than 98.6°F (37°C).
• Use Insulin Lispro Injection in pump systems suitable for insulin infusion [see Patient Counseling Information (17)].

Intravenous Administration

Intravenous Administration
• Dilute Insulin Lispro Injection to concentrations from 0.1 unit/mL to 1.0 unit/mL using 0.9% Sodium Chloride Injection, USP.
• Administer Insulin Lispro Injection intravenously ONLY under medical supervision with close monitoring of blood glucose and potassium levels to avoid hypoglycemia and hypokalemia [see Warnings and Precautions (5.3, 5.6) and How Supplied/Storage and Handling (16.4)].

2.3 Dosage Information
- Individualize and adjust the dosage of Insulin Lispro Injection based on route of administration, the individual's metabolic needs, blood glucose monitoring results and glycemic control goal.
- Dosage adjustments may be needed with changes in physical activity, changes in meal patterns (i.e., macronutrient content or timing of food intake), changes in renal or hepatic function or during acute illness [see Warnings and Precautions (5.2, 5.3) and Use in Specific Populations (8.6, 8.7)].
- Do NOT perform dose conversion when using the Insulin Lispro Injection prefilled pens. The dose window shows the number of insulin units to be delivered and no conversion is needed.

2.4 Dosage Adjustment Due to Drug Interactions
- Dosage adjustment may be needed when Insulin Lispro Injection is coadministered with certain drugs [see Drug Interactions (7)].
- Dosage adjustment may be needed when switching from another insulin to Insulin Lispro Injection [see Warnings and Precautions (5.2)].
- Instructions for Mixing with Other Insulins

<table>
<thead>
<tr>
<th>Insulin Lispro Injection subcutaneous injection route</th>
<th>• Insulin Lispro Injection may be mixed with NPH insulin preparations ONLY.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• If Insulin Lispro Injection is mixed with NPH insulin, Insulin Lispro Injection should be drawn into the syringe first. Injection should occur immediately after mixing.</td>
</tr>
<tr>
<td>Insulin Lispro Injection continuous subcutaneous infusion route (Insulin Pump)</td>
<td>• Do NOT mix Insulin Lispro Injection with any other insulin.</td>
</tr>
</tbody>
</table>

3 DOSAGE FORMS AND STRENGTHS
Injection: 100 units per mL (U-100) clear and colorless solution available as:
- 10 mL multiple-dose vial
- 3 mL single-patient-use Insulin Lispro Injection KwikPen
- 3 mL single-patient-use Insulin Lispro Injection Junior KwikPen

4 CONTRAINDICATIONS
Insulin Lispro Injection is contraindicated:
- during episodes of hypoglycemia
- in patients who are hypersensitive to Insulin Lispro Injection or to any of its excipients.

5 WARNINGS AND PRECAUTIONS

5.1 Never Share an Insulin Lispro Injection Prefilled Pen or Syringe Between Patients
Insulin Lispro Injection prefilled pens must never be shared between patients, even if the needle is changed. Patients using Insulin Lispro Injection vials must never share needles or syringes with another person. Sharing poses a risk for transmission of blood-borne pathogens.

5.2 Hyperglycemia or Hypoglycemia with Changes in Insulin Regimen
Changes in an insulin regimen (e.g., insulin strength, manufacturer, type, injection site or method of administration) may affect glycemic control and predispose to hypoglycemia [see Warnings and Precautions (5.3)] or hyperglycemia. Repeated insulin injections into areas of lipodystrophy or localized cutaneous amyloidosis have been reported to result in hyperglycemia; and a sudden change in the injection site (to an unaffected area) has been reported to result in hypoglycemia [see Adverse Reactions (6)].

Make any changes to a patient's insulin regimen under close medical supervision with increased frequency of blood glucose monitoring. Advise patients who have repeatedly injected into areas of lipodystrophy or localized cutaneous amyloidosis to change the injection site to unaffected areas and closely monitor for hypoglycemia. For patients with type 2 diabetes, dosage adjustments of concomitant antidiabetic products may be needed.

5.3 Hypoglycemia
Hypoglycemia is the most common adverse reaction associated with insulins, including Insulin Lispro Injection. Severe hypoglycemia can cause seizures, may be life-threatening, or cause death. Hypoglycemia can impair
concentration ability and reaction time; this may place an individual and others at risk in situations where these abilities are important (e.g., driving or operating other machinery).

Hypoglycemia can happen suddenly and symptoms may differ in each individual and change over time in the same individual. Symptomatic awareness of hypoglycemia may be less pronounced in patients with longstanding diabetes, in patients with diabetic nerve disease, in patients using medications that block the sympathetic nervous system (e.g., beta-blockers) [see Drug Interactions (7)], or in patients who experience recurrent hypoglycemia.

Risk Factors for Hypoglycemia

The risk of hypoglycemia after an injection is related to the duration of action of the insulin and, in general, is highest when the glucose lowering effect of the insulin is maximal. As with all insulin preparations, the glucose lowering effect time course of Insulin Lispro Injection may vary in different individuals or at different times in the same individual and depends on many conditions, including the area of injection as well as the injection site blood supply and temperature [see Clinical Pharmacology (12.2)]. Other factors which may increase the risk of hypoglycemia include changes in meal pattern (e.g., macronutrient content or timing of meals), changes in level of physical activity, or changes to co-administered medication [see Drug Interactions (7)]. Patients with renal or hepatic impairment may be at higher risk of hypoglycemia [see Use in Specific Populations (8.6, 8.7)].

Risk Mitigation Strategies for Hypoglycemia

Patients and caregivers must be educated to recognize and manage hypoglycemia. Self-monitoring of blood glucose plays an essential role in the prevention and management of hypoglycemia. In patients at higher risk for hypoglycemia and patients who have reduced symptomatic awareness of hypoglycemia, increased frequency of blood glucose monitoring is recommended.

5.4 Hypoglycemia Due to Medication Errors

Accidental mix-ups between basal insulin products and other insulins, particularly rapid-acting insulins, have been reported. To avoid medication errors between Insulin Lispro Injection and other insulins, instruct patients to always check the insulin label before each injection.

5.5 Hypersensitivity Reactions

Severe, life-threatening, generalized allergy, including anaphylaxis, can occur with insulin products, including Insulin Lispro Injection. If hypersensitivity reactions occur, discontinue Insulin Lispro Injection; treat per standard of care and monitor until symptoms and signs resolve [see Adverse Reactions (6.1)]. Insulin Lispro Injection is contraindicated in patients who have had hypersensitivity reactions to Insulin Lispro Injection or any of its excipients [see Contraindications (4)].

5.6 Hypokalemia

All insulin products, including Insulin Lispro Injection, cause a shift in potassium from the extracellular to intracellular space, possibly leading to hypokalemia. Untreated hypokalemia may cause respiratory paralysis, ventricular arrhythmia, and death. Monitor potassium levels in patients at risk for hypokalemia if indicated (e.g., patients using potassium-lowering medications, patients taking medications sensitive to serum potassium concentrations).

5.7 Fluid Retention and Heart Failure with Concomitant Use of PPAR-gamma Agonists

Thiazolidinediones (TZDs), which are peroxisome proliferator-activated receptor (PPAR)-gamma agonists, can cause dose-related fluid retention, particularly when used in combination with insulin. Fluid retention may lead to or exacerbate heart failure. Patients treated with insulin, including Insulin Lispro Injection, and a PPAR-gamma agonist should be observed for signs and symptoms of heart failure. If heart failure develops, it should be managed according to current standards of care, and discontinuation or dose reduction of the PPAR-gamma agonist must be considered.

5.8 Hyperglycemia and Ketoacidosis Due to Insulin Pump Device Malfunction

Malfunction of the insulin pump or insulin infusion set or insulin degradation can rapidly lead to hyperglycemia and ketoacidosis. Prompt identification and correction of the cause of hyperglycemia or ketosis is necessary. Interim subcutaneous injections with Insulin Lispro Injection may be required. Patients using continuous subcutaneous insulin infusion pump therapy must be trained to administer insulin by injection and have alternate insulin therapy available in case of pump failure [see How Supplied/Storage and Handling (16.2) and Patient Counseling Information (17)].

6 ADVERSE REACTIONS

The following adverse reactions are discussed elsewhere:

- Hypoglycemia [see Warnings and Precautions (5.3)].
- Hypokalemia [see Warnings and Precautions (5.6)].

6.1 Clinical Trial Experience

Because clinical trials are conducted under widely varying designs, the adverse reaction rates reported in one clinical trial may not be easily compared with those rates reported in another clinical trial, and may not reflect the rates actually observed in clinical practice.

The frequencies of Treatment-Emergent Adverse Events during Insulin Lispro Injection clinical trials in patients with type 1 diabetes mellitus and type 2 diabetes mellitus are listed in the tables below.
Table 1: Treatment-Emergent Adverse Events in Patients with Type 1 Diabetes Mellitus
(adverse events with frequency ≥5%)

<table>
<thead>
<tr>
<th>Events, n (%)</th>
<th>Insulin Lispro Injection (n=81)</th>
<th>Regular human insulin (n=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flu syndrome</td>
<td>28 (34.6)</td>
<td>28 (32.6)</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>27 (33.3)</td>
<td>29 (33.7)</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>20 (24.7)</td>
<td>25 (29.1)</td>
</tr>
<tr>
<td>Headache</td>
<td>24 (29.6)</td>
<td>19 (22.1)</td>
</tr>
<tr>
<td>Pain</td>
<td>16 (19.8)</td>
<td>14 (16.3)</td>
</tr>
<tr>
<td>Cough increased</td>
<td>14 (17.3)</td>
<td>15 (17.4)</td>
</tr>
<tr>
<td>Infection</td>
<td>11 (13.6)</td>
<td>18 (20.9)</td>
</tr>
<tr>
<td>Nausea</td>
<td>5 (6.2)</td>
<td>13 (15.1)</td>
</tr>
<tr>
<td>Accidental injury</td>
<td>7 (8.6)</td>
<td>10 (11.6)</td>
</tr>
<tr>
<td>Surgical procedure</td>
<td>5 (6.2)</td>
<td>12 (14.0)</td>
</tr>
<tr>
<td>Fever</td>
<td>5 (6.2)</td>
<td>10 (11.6)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>6 (7.4)</td>
<td>7 (8.1)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>6 (7.4)</td>
<td>7 (8.1)</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>6 (7.4)</td>
<td>6 (7.0)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7 (8.6)</td>
<td>5 (5.8)</td>
</tr>
<tr>
<td>Dysmenorrhea</td>
<td>5 (6.2)</td>
<td>6 (7.0)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>6 (7.4)</td>
<td>5 (5.8)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>5 (6.2)</td>
<td>4 (4.7)</td>
</tr>
</tbody>
</table>

Table 2: Treatment-Emergent Adverse Events in Patients with Type 2 Diabetes Mellitus
(adverse events with frequency ≥5%)

<table>
<thead>
<tr>
<th>Events, n (%)</th>
<th>Insulin Lispro Injection (n=714)</th>
<th>Regular human insulin (n=709)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>83 (11.6)</td>
<td>66 (9.3)</td>
</tr>
<tr>
<td>Pain</td>
<td>77 (10.8)</td>
<td>71 (10.0)</td>
</tr>
<tr>
<td>Infection</td>
<td>72 (10.1)</td>
<td>54 (7.6)</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>47 (6.6)</td>
<td>58 (8.2)</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>58 (8.1)</td>
<td>47 (6.6)</td>
</tr>
<tr>
<td>Flu syndrome</td>
<td>44 (6.2)</td>
<td>58 (8.2)</td>
</tr>
<tr>
<td>Surgical procedure</td>
<td>53 (7.4)</td>
<td>48 (6.8)</td>
</tr>
</tbody>
</table>

Insulin initiation and intensification of glucose control

Intensification or rapid improvement in glucose control has been associated with a transitory, reversible ophthalmologic refraction disorder, worsening of diabetic retinopathy, and acute painful peripheral neuropathy. However, long-term glycemic control decreases the risk of diabetic retinopathy and neuropathy.

Lipodystrophy

Long-term use of insulin, including Insulin Lispro Injection, can cause lipodystrophy at the site of repeated insulin injections or infusion. Lipodystrophy includes lipohypertrophy (thickening of adipose tissue) and lipoatrophy (thinning of adipose tissue), and may affect insulin absorption. Rotate insulin injection or infusion sites within the same region to reduce the risk of lipodystrophy [see Dosage and Administration (2.2)].

Weight gain

Weight gain can occur with insulin therapy, including Insulin Lispro Injection, and has been attributed to the anabolic effects of insulin and the decrease in glucosuria.

Peripheral Edema

Insulin, including Insulin Lispro Injection, may cause sodium retention and edema, particularly if previously poor metabolic control is improved by intensified insulin therapy.

Adverse Reactions with Continuous Subcutaneous Insulin Infusion (CSII)

In a 12-week, randomized, crossover study in adult patients with type 1 diabetes (n=39), the rates of catheter occlusions and infusion site reactions were similar for Insulin Lispro Injection and regular human insulin treated patients [see Table 3].

Table 3: Catheter Occlusions and Infusion Site Reactions
In a randomized, 16-week, open-label, parallel design study of children and adolescents with type 1 diabetes, adverse event reports related to infusion-site reactions were similar for Insulin Lispro Injection and insulin aspart (21% of 100 patients versus 17% of 198 patients, respectively). In both groups, the most frequently reported infusion site adverse events were infusion site erythema and infusion site reaction.

Allergic Reactions

Local Allergy — As with any insulin therapy, patients taking Insulin Lispro Injection may experience redness, swelling, or itching at the site of the injection. These minor reactions usually resolve in a few days to a few weeks, but in some instances, may require discontinuation of Insulin Lispro Injection. In some instances, these reactions may be related to factors other than insulin, such as irritants in a skin cleansing agent or poor injection technique.

Systemic Allergy — Severe, life-threatening, generalized allergy, including anaphylaxis, may occur with any insulin, including Insulin Lispro Injection. Generalized allergy to insulin may cause whole body rash (including pruritus), dyspnea, wheezing, hypotension, tachycardia, or diaphoresis.

In controlled clinical trials, pruritus (with or without rash) was seen in 17 patients receiving regular human insulin (n=2969) and 30 patients receiving Insulin Lispro Injection (n=2944).

Localized reactions and generalized myalgias have been reported with injected metacresol, which is an excipient in Insulin Lispro Injection [see Contraindications (4)].

Antibody Production

In large clinical trials with patients with type 1 (n=509) and type 2 (n=262) diabetes mellitus, anti-insulin antibody (insulin lispro-specific antibodies, insulin-specific antibodies, cross-reactive antibodies) formation was evaluated in patients receiving both regular human insulin and Insulin Lispro Injection (including patients previously treated with human insulin and naive patients). As expected, the largest increase in the antibody levels occurred in patients new to insulin therapy. The antibody levels peaked by 12 months and declined over the remaining years of the study. These antibodies do not appear to cause deterioration in glycemic control or necessitate an increase in insulin dose. There was no statistically significant relationship between the change in the total daily insulin dose and the change in percent antibody binding for any of the antibody types.

6.2 Postmarketing Experience

The following additional adverse reactions have been identified during post-approval use of Insulin Lispro Injection. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Medication errors in which other insulins have been accidentally substituted for Insulin Lispro Injection have been identified during post-approval use [see Patient Counseling Information (17)].

Localized cutaneous amyloidosis at the injection site has occurred. Hyperglycemia has been reported with repeated insulin injections into areas of localized cutaneous amyloidosis; hypoglycemia has been reported with a sudden change to an unaffected injection site.

7 DRUG INTERACTIONS

7.1 Drugs That May Increase the Risk of Hypoglycemia

The risk of hypoglycemia associated with Insulin Lispro Injection use may be increased when co-administered with antidiabetic agents, salicylates, sulfonamide antibiotics, monoamine oxidase inhibitors, fluoxetine, pramlintide, disopyramide, fribates, pentoxifylline, ACE inhibitors, angiotensin II receptor blocking agents, and somatostatin analogs (e.g., octreotide). Dose adjustment and increased frequency of glucose monitoring may be required when Insulin Lispro Injection is co-administered with these drugs.

7.2 Drugs That May Decrease the Blood Glucose Lowering Effect of Insulin Lispro Injection

The glucose lowering effect of Insulin Lispro Injection may be decreased when co-administered with corticosteroids, isoniazid, niacin, estrogens, oral contraceptives, phenothiazines, danazol, diuretics, sympathomimetic agents (e.g., epinephrine, albuterol, terbutaline), somatropin, atypical antipsychotics, glucagon, protease inhibitors, and thyroid hormones. Dose adjustment and increased frequency of glucose monitoring may be required when Insulin Lispro Injection is co-administered with these drugs.

7.3 Drugs That May Increase or Decrease the Blood Glucose Lowering Effect of Insulin Lispro Injection

The glucose lowering effect of Insulin Lispro Injection may be increased or decreased when co-administered with beta-blockers, clonidine, lithium salts, and alcohol. Pentamidine may cause hypoglycemia, which may sometimes be followed by hyperglycemia. Dose adjustment and increased frequency of glucose monitoring may be required when Insulin Lispro Injection is co-administered with these drugs.

7.4 Drugs That May Blunt Signs and Symptoms of Hypoglycemia
8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy
Risk Summary
The limited available data with Insulin Lispro Injection in pregnant women are insufficient to inform a drug-associated risk of adverse developmental outcomes. Published studies with insulin lispro used during pregnancy have not reported an association between insulin lispro and the induction of major birth defects, miscarriage, or adverse maternal or fetal outcomes (see Data). There are risks to the mother and fetus associated with poorly controlled diabetes in pregnancy (see Clinical Considerations).

Pregnant rats and rabbits were exposed to insulin lispro in animal reproduction studies during organogenesis. No adverse effects on embryo/fetal viability or morphology were observed in offspring of rats exposed to insulin lispro at a dose approximately 3 times the human subcutaneous dose of 1 unit insulin lispro/kg/day. No adverse effects on embryo/fetal development were observed in offspring of rabbits exposed to insulin lispro at doses up to approximately 0.2 times the human subcutaneous dose of 1 unit/kg/day (see Data).

The estimated background risk of major birth defects is 6-10% in women with pre-gestational diabetes with an HbA1c >7 and has been reported to be as high as 20-25% in women with an HbA1c >10. The estimated background risk of miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Clinical Considerations
Disease-associated maternal and/or embryo/fetal risk
Poorly controlled diabetes in pregnancy increases the maternal risk for diabetic ketoacidosis, pre-eclampsia, spontaneous abortions, preterm delivery, and delivery complications. Poorly controlled diabetes increases the fetal risk for major birth defects, stillbirth, and macrosomia related morbidity.

Data
Human Data
Published data from retrospective studies and meta-analyses do not report an association with insulin lispro and major birth defects, miscarriage, or adverse maternal or fetal outcomes when insulin lispro is used during pregnancy. However, these studies cannot definitely establish or exclude the absence of any risk because of methodological limitations including small sample size, selection bias, confounding by unmeasured factors, and some lacking comparator groups.

Animal Data
In a combined fertility and embryo-fetal development study, female rats were given subcutaneous insulin lispro injections of 1, 5, and 20 units/kg/day (0.2, 0.8, and 3 times the human subcutaneous dose of 1 unit insulin lispro/kg/day, based on units/body surface area, respectively) from 2 weeks prior to cohabitation through Gestation Day 19. There were no adverse effects on female fertility, implantation, or fetal viability and morphology. However, fetal growth retardation was produced at the 20 units/kg/day-dose as indicated by decreased fetal weight and an increased incidence of fetal runts/litter.

In an embryo-fetal development study in pregnant rabbits, insulin lispro doses of 0.1, 0.25, and 0.75 unit/kg/day (0.03, 0.08, and 0.2 times the human subcutaneous dose of 1 unit insulin lispro/kg/day, based on units/body surface area, respectively) were injected subcutaneously on Gestation days 7 through 19. There were no adverse effects on fetal viability, weight, and morphology at any dose.

8.2 Lactation
Risk Summary
There are no data on the presence of Insulin Lispro Injection in human milk, the effects on the breastfed infant, or the effect on milk production. One small published study reported that exogenous insulin was present in human milk. However, there is insufficient information to determine the effects of Insulin Lispro Injection on the breastfed infant and no available information on the effects of Insulin Lispro Injection on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for insulin, any potential adverse effects on the breastfed child from Insulin Lispro Injection or from the underlying maternal condition.

8.4 Pediatric Use
Insulin Lispro Injection is approved for use in children for subcutaneous daily injections [see Clinical Studies (14)]. Insulin Lispro Injection is approved for use in children by continuous subcutaneous infusion in insulin pumps. Insulin Lispro Injection has not been studied in pediatric patients younger than 3 years of age. Insulin Lispro Injection has not been studied in pediatric patients with type 2 diabetes.

As in adults, the dosage of Insulin Lispro Injection must be individualized in pediatric patients based on metabolic needs and results of frequent monitoring of blood glucose.

8.5 Geriatric Use
Of the total number of subjects (n=2834) in eight clinical studies of Insulin Lispro Injection, twelve percent (n=338) were 65 years of age or over. The majority of these had type 2 diabetes. HbA1c values and hypoglycemia rates did not differ by age. Pharmacokinetic/pharmacodynamic studies to assess the effect of age on the onset of Insulin Lispro Injection action have not been performed.

8.6 Renal Impairment
Patients with renal impairment may be at increased risk of hypoglycemia and may require more frequent Insulin Lispro Injection dose adjustment and more frequent blood glucose monitoring [see Clinical Pharmacology (12.3)].

8.7 Hepatic Impairment
Patients with hepatic impairment may be at increased risk of hypoglycemia and may require more frequent Insulin Lispro Injection dose adjustment and more frequent blood glucose monitoring [see Clinical Pharmacology (12.3)].

10 OVERDOSAGE
Excess insulin administration may cause hypoglycemia and hypokalemia. Mild episodes of hypoglycemia usually can be treated with oral glucose. Adjustments in drug dosage, meal patterns, or exercise may be needed. More severe episodes with coma, seizure, or neurologic impairment may be treated with intramuscular/subcutaneous glucagon or concentrated intravenous glucose. Sustained carbohydrate intake and observation may be necessary because hypoglycemia may recur after apparent clinical recovery. Hypokalemia must be corrected appropriately.

11 DESCRIPTION
Insulin Lispro Injection is a rapid-acting human insulin analog. Insulin lispro is produced by recombinant DNA technology utilizing a non-pathogenic laboratory strain of *Escherichia coli*. Insulin lispro differs from human insulin in that the amino acid proline at position B28 is replaced by lysine and the lysine in position B29 is replaced by proline. Chemically, it is Lys(B28), Pro(B29) human insulin analog and has the empirical formula C_{257}H_{383}N_{65}O_{77}S_{6} and a molecular weight of 5808, both identical to that of human insulin.

Insulin Lispro Injection has the following primary structure:

Insulin Lispro Injection is a sterile, aqueous, clear, and colorless solution for subcutaneous or intravenous use. Each milliliter of Insulin Lispro Injection contains 100 units of insulin lispro, dibasic sodium phosphate (1.88 mg), glycerin (16 mg), Metacresol (3.15 mg), zinc oxide (content adjusted to provide 0.0197 mg zinc ion), trace amounts of phenol, and Water for Injection, USP. Insulin lispro has a pH of 7.0 to 7.8.

The pH is adjusted by addition of aqueous solutions of hydrochloric acid 10% and/or sodium hydroxide 10%.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action
Regulation of glucose metabolism is the primary activity of insulins and insulin analogs, including insulin lispro. Insulins lower blood glucose by stimulating peripheral glucose uptake by skeletal muscle and fat, and by inhibiting hepatic glucose production. Insulins inhibit lipolysis and proteolysis, and enhance protein synthesis.

12.2 Pharmacodynamics
Insulin Lispro Injection has been shown to be equipotent to human insulin on a molar basis. One unit of Insulin Lispro Injection has the same glucose-lowering effect as one unit of regular human insulin. Studies in normal volunteers and patients with diabetes demonstrated that Insulin Lispro Injection has a more rapid onset of action and a shorter duration of activity than regular human insulin when given subcutaneously.

The time course of action of insulin and insulin analogs, such as Insulin Lispro Injection, may vary considerably in different individuals or within the same individual. The parameters of Insulin Lispro Injection activity (time of onset, peak time, and duration) as designated in Figure 1 should be considered only as general guidelines. The rate of insulin absorption, and consequently the onset of activity are known to be affected by the site of injection, exercise, and other variables [see Warnings and Precautions (5.2)].
Figure 1: Blood Glucose Levels After Subcutaneous Injection of Regular Human Insulin or Insulin Lispro Injection (0.2 unit/kg) Immediately Before a High Carbohydrate Meal in 10 Patients with Type 1 Diabetes.

Baseline insulin concentration was maintained by infusion of 0.2 mU/min/kg human insulin.

Intravenous Administration — The glucose lowering effect of intravenously administered Insulin Lispro Injection was tested in 21 patients with type 1 diabetes. For the study, the patients’ usual doses of insulin were held and blood glucose concentrations were allowed to reach a stable range of 200 to 260 mg/dL during a one to three hours run-in phase. The run-in phase was followed by a 6-hour assessment phase. During the assessment phase, patients received intravenous Insulin Lispro Injection at an initial infusion rate of 0.5 units/hour. The infusion rate of Insulin Lispro Injection could be adjusted at regular timed intervals to achieve and maintain blood glucose concentrations between 100 to 160 mg/dL.

The mean blood glucose levels during the assessment phase for patients on Insulin Lispro Injection therapy are summarized below in Table 4. All patients achieved the targeted glucose range at some point during the 6-hour assessment phase. At the endpoint, blood glucose was within the target range (100 to 160 mg/dL) for 17 of 20 patients treated with Insulin Lispro Injection. The average time (±SE) required to attain near normoglycemia was 129 ± 14 minutes for Insulin Lispro Injection.

Table 4: Mean Blood Glucose Concentrations (mg/dL) During Intravenous Infusions of Insulin Lispro Injection

<table>
<thead>
<tr>
<th>Time from Start of Infusion (minutes)</th>
<th>Mean Blood Glucose (mg/dL) Intravenous<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>224 ± 16</td>
</tr>
<tr>
<td>30</td>
<td>205 ± 21</td>
</tr>
<tr>
<td>60</td>
<td>195 ± 20</td>
</tr>
<tr>
<td>120</td>
<td>165 ± 26</td>
</tr>
<tr>
<td>180</td>
<td>140 ± 26</td>
</tr>
<tr>
<td>240</td>
<td>123 ± 20</td>
</tr>
<tr>
<td>300</td>
<td>120 ± 27</td>
</tr>
<tr>
<td>360</td>
<td>122 ± 25</td>
</tr>
</tbody>
</table>

^a Results shown as mean ± SD

12.3 Pharmacokinetics

Absorption and Bioavailability — Studies in healthy volunteers and patients with diabetes demonstrated that Insulin Lispro Injection is absorbed more quickly than regular human insulin. In healthy volunteers given subcutaneous doses of Insulin Lispro Injection ranging from 0.1 to 0.4 unit/kg, peak serum levels were seen 30 to 90 minutes after dosing. When healthy volunteers received equivalent doses of regular human insulin, peak insulin levels occurred between 50 to 120 minutes after dosing. Similar results were seen in patients with type 1 diabetes (see Figure 2).
Insulin Lispro Injection was absorbed at a consistently faster rate than regular human insulin in healthy male volunteers given 0.2 unit/kg at abdominal, deltoid, or femoral subcutaneous sites. After Insulin Lispro Injection was administered in the abdomen, serum drug levels were higher and the duration of action was slightly shorter than after deltoid or thigh administration. Bioavailability of Insulin Lispro Injection is similar to that of regular human insulin. The absolute bioavailability after subcutaneous injection ranges from 55% to 77% with doses between 0.1 to 0.2 unit/kg, inclusive.

Distribution — When administered intravenously as bolus injections of 0.1 and 0.2 U/kg dose in two separate groups of healthy subjects, the mean volume of distribution of Insulin Lispro Injection appeared to decrease with increase in dose (1.55 and 0.72 L/kg, respectively) in contrast to that of regular human insulin for which, the volume of distribution was comparable across the two dose groups (1.37 and 1.12 L/kg for 0.1 and 0.2 U/kg dose, respectively).

Metabolism — Human metabolism studies have not been conducted. However, animal studies indicate that the metabolism of Insulin Lispro Injection is identical to that of regular human insulin.

Elimination — After subcutaneous administration of Insulin Lispro Injection, the $t_{1/2}$ is shorter than that of regular human insulin (1 versus 1.5 hours, respectively). When administered intravenously, Insulin Lispro Injection and regular human insulin demonstrated similar dose-dependent clearance, with a mean clearance of 21.0 mL/min/kg and 21.4 mL/min/kg, respectively (0.1 unit/kg dose), and 9.6 mL/min/kg and 9.4 mL/min/kg, respectively (0.2 unit/kg dose). Accordingly, Insulin Lispro Injection demonstrated a mean $t_{1/2}$ of 0.85 hours (51 minutes) and 0.92 hours (55 minutes), respectively for 0.1 unit/kg and 0.2 unit/kg doses, and regular human insulin mean $t_{1/2}$ was 0.79 hours (47 minutes) and 1.28 hours (77 minutes), respectively for 0.1 unit/kg and 0.2 unit/kg doses.

Specific Populations

The effects of age, gender, race, obesity, pregnancy, or smoking on the pharmacokinetics of Insulin Lispro Injection have not been studied.

Renal Impairment — Type 2 diabetic patients with varying degree of renal impairment showed no difference in pharmacokinetics of regular insulin and Insulin Lispro Injection. However, the sensitivity of the patients to insulin did change, with an increased response to insulin as the renal function declined. Some studies with human insulin have shown increased circulating levels of insulin in patients with renal impairment. Careful glucose monitoring and dose adjustments of insulin, including Insulin Lispro Injection, may be necessary in patients with renal dysfunction.

Hepatic Impairment — Type 2 diabetic patients with impaired hepatic function showed no effect on the pharmacokinetics of Insulin Lispro Injection as compared to patients with no hepatic dysfunction. However, some studies with human insulin have shown increased circulating levels of insulin in patients with liver failure. Careful glucose monitoring and dose adjustments of insulin, including Insulin Lispro Injection, may be necessary in patients with hepatic dysfunction.
13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Standard 2-year carcinogenicity studies in animals have not been performed. In Fischer 344 rats, a 12-month repeat-dose toxicity study was conducted with insulin lispro at subcutaneous doses of 20 and 200 units/kg/day (approximately 3 and 32 times the human subcutaneous dose of 1 unit/kg/day, based on units/body surface area). Insulin lispro did not produce important target organ toxicity including mammary tumors at any dose.

Insulin lispro was not mutagenic in the following genetic toxicity assays: bacterial mutation, unscheduled DNA synthesis, mouse lymphoma, chromosomal aberration and micronucleus assays.

Male fertility was not compromised when male rats given subcutaneous insulin lispro injections of 5 and 20 units/kg/day (0.8 and 3 times the human subcutaneous dose of 1 unit/kg/day, based on units/body surface area) for 6 months were mated with untreated female rats. In a combined fertility, perinatal, and postnatal study in male and female rats given 1, 5, and 20 units/kg/day subcutaneously (0.2, 0.8, and 3 times the human subcutaneous dose of 1 unit/kg/day, based on units/body surface area), mating and fertility were not adversely affected in either gender at any dose.

13.2 Animal Toxicology and/or Pharmacology

In standard biological assays in fasted rabbits, 0.2 unit/kg of insulin lispro injected subcutaneously had the same glucose-lowering effect and had a more rapid onset of action as 0.2 unit/kg of regular human insulin.

14 CLINICAL STUDIES

The safety and efficacy of Insulin Lispro Injection were studied in children, adolescent, and adult patients with type 1 diabetes (n=789) and adult patients with type 2 diabetes (n=722).

14.1 Type 1 Diabetes – Adults and Adolescents

A 12-month, randomized, parallel, open-label, active-controlled study was conducted in patients with type 1 diabetes to assess the safety and efficacy of Insulin Lispro Injection (n=81) compared with Humulin® R [insulin human injection (100 units per mL)] (n=86). Insulin Lispro Injection was administered by subcutaneous injection immediately prior to meals and Humulin R was administered 30 to 45 minutes before meals. Humulin® U [ULTRALENTE® human insulin (rDNA origin) extended zinc suspension] was administered once or twice daily as the basal insulin. There was a 2- to 4-week run-in period with Humulin R and Humulin U before randomization. Most patients were Caucasian (97%). Forty-seven percent of the patients were male. The mean age was 31 years (range 12 to 70 years). Glycemic control, the total daily doses of Insulin Lispro Injection and Humulin R, and the incidence of severe hypoglycemia (as determined by the number of events that were not self-treated) were similar in the two treatment groups. There were no episodes of diabetic ketoacidosis in either treatment group.

<table>
<thead>
<tr>
<th>Treatment Duration</th>
<th>Treatment in Combination with:</th>
<th>Insulin Lispro Injection</th>
<th>Humulin R</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>81</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Baseline HbA1c (%)</td>
<td>a 8.2 ± 1.4</td>
<td>8.3 ± 1.7</td>
<td></td>
</tr>
<tr>
<td>Change from baseline HbA1c (%)</td>
<td>-0.1 ± 0.9</td>
<td>0.1 ± 1.1</td>
<td></td>
</tr>
<tr>
<td>Treatment Difference in HbA1c Mean (95% confidence interval)</td>
<td>.4 (0.0, 0.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline short-acting insulin dose (units/kg/day)</td>
<td>0.3 ± 0.1</td>
<td>0.3 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>End-of-Study short-acting insulin dose (units/kg/day)</td>
<td>0.3 ± 0.1</td>
<td>0.3 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>Change from baseline short-acting insulin dose (units/kg/day)</td>
<td>0.0 ± 0.1</td>
<td>0.0 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>Baseline Body weight (kg)</td>
<td>72 ± 12.7</td>
<td>71 ± 11.3</td>
<td></td>
</tr>
<tr>
<td>Weight change from baseline (kg)</td>
<td>1.4 ± 3.6</td>
<td>1.0 ± 2.6</td>
<td></td>
</tr>
<tr>
<td>Patients with severe hypoglycemia (n, %)</td>
<td>b 14 (17%)</td>
<td>18 (21%)</td>
<td></td>
</tr>
</tbody>
</table>

a Values are Mean ± SD

b Severe hypoglycemia refers to hypoglycemia for which patients were not able to self-treat.

14.2 Type 2 Diabetes – Adults

A 6-month randomized, crossover, open-label, active-controlled study was conducted in insulin-treated patients with type 2 diabetes (n=722) to assess the safety and efficacy of Insulin Lispro Injection for 3 months followed by Humulin R for 3 months or the reverse sequence. Insulin Lispro Injection was administered by subcutaneous injection immediately before meals and Humulin R was administered 30 to 45 minutes before meals. Humulin® N [NPH human insulin (rDNA origin) isophane suspension] or Humulin U was administered once or twice daily as the basal insulin. All patients participated in a 2- to 4-week run-in period with Humulin R and Humulin N or Humulin U. Most of the patients were Caucasian (88%), and the numbers of men and women in each group were approximately equal. The mean age was 58.6 years (range 23.8 to 85 years). The average body mass index (BMI) was 28.2 kg/m². During the study, the majority of
patients used Humulin N (84%) compared with Humulin U (16%) as their basal insulin. The reductions from baseline in HbA1c and the incidence of severe hypoglycemia (as determined by the number of events that were not self-treated) were similar between the two treatments from the combined groups (see Table 6).

Table 6: Type 2 Diabetes Mellitus — Adults

<table>
<thead>
<tr>
<th>End point</th>
<th>Baseline</th>
<th>Insulin Lispro Injection + Basal</th>
<th>Humulin R + Basal</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (%)</td>
<td>8.9 ± 1.7</td>
<td>8.2 ± 1.3</td>
<td>8.2 ± 1.4</td>
</tr>
<tr>
<td>Change from baseline HbA1c (%)</td>
<td>—</td>
<td>-0.7 ± 1.4</td>
<td>-0.7 ± 1.3</td>
</tr>
<tr>
<td>Short-acting insulin dose (units/kg/day)</td>
<td>0.3 ± 0.2</td>
<td>0.3 ± 0.2</td>
<td>0.3 ± 0.2</td>
</tr>
<tr>
<td>Change from baseline short-acting insulin dose (units/kg/day)</td>
<td>—</td>
<td>0.0 ± 0.1</td>
<td>0.0 ± 0.1</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>60 ± 15</td>
<td>81 ± 15</td>
<td>81 ± 15</td>
</tr>
<tr>
<td>Weight change from baseline</td>
<td>—</td>
<td>0.8 ± 2.7</td>
<td>0.9 ± 2.6</td>
</tr>
<tr>
<td>Patients with severe hypoglycemia (n, %)</td>
<td>—</td>
<td>15 (2%)</td>
<td>16 (2%)</td>
</tr>
</tbody>
</table>

a Values are Mean ± SD
b Severe hypoglycemia refers to hypoglycemia for which patients were not able to self-treat.

14.3 Type 1 Diabetes – Pediatric and Adolescents

An 8-month, crossover study of adolescents with type 1 diabetes (n=463), aged 9 to 19 years, compared two subcutaneous multiple-dose treatment regimens: Insulin Lispro Injection or Humulin R, both administered with Humulin N (NPH human insulin) as the basal insulin. Insulin Lispro Injection achieved glycemic control comparable to Humulin R, as measured by HbA1c (see Table 7), and both treatment groups had a comparable incidence of hypoglycemia. In a 9-month, crossover study of prepubescent children (n=60) with type 1 diabetes, aged 3 to 11 years, Insulin Lispro Injection administered immediately before meals, Insulin Lispro Injection administered immediately after meals and Humulin R administered 30 minutes before meals resulted in similar glycemic control, as measured by HbA1c, and incidence of hypoglycemia, regardless of treatment group.

Table 7: Pediatric Subcutaneous Administration of Insulin Lispro Injection in Type 1 Diabetes

<table>
<thead>
<tr>
<th>End point</th>
<th>Baseline</th>
<th>Insulin Lispro Injection + NPH</th>
<th>Humulin R + NPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (%)</td>
<td>8.6 ± 1.5</td>
<td>8.7 ± 1.5</td>
<td>8.7 ± 1.6</td>
</tr>
<tr>
<td>Change from baseline HbA1c (%)</td>
<td>—</td>
<td>0.1 ± 1.1</td>
<td>0.1 ± 1.3</td>
</tr>
<tr>
<td>Short-acting insulin dose (units/kg/day)</td>
<td>0.5 ± 0.2</td>
<td>0.5 ± 0.2</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>Change from baseline short-acting insulin dose (units/kg/day)</td>
<td>—</td>
<td>0.01 ± 0.1</td>
<td>-0.01 ± 0.1</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>59.1 ± 13.1</td>
<td>61.1 ± 12.7</td>
<td>61.4 ± 12.9</td>
</tr>
<tr>
<td>Weight change from baseline (kg)</td>
<td>—</td>
<td>2.0 ± 3.1</td>
<td>2.3 ± 3.0</td>
</tr>
<tr>
<td>Patients with severe hypoglycemia (n, %)</td>
<td>—</td>
<td>5 (1.1%)</td>
<td>5 (1.1%)</td>
</tr>
<tr>
<td>Diabetic ketoacidosis (n, %)</td>
<td>—</td>
<td>11 (2.4%)</td>
<td>9 (1.9%)</td>
</tr>
</tbody>
</table>

a Values are Mean ± SD
b Severe hypoglycemia refers to hypoglycemia that required glucagon or glucose injection or resulted in coma.

14.4 Type 1 Diabetes – Adults Continuous Subcutaneous Insulin Infusion

To evaluate the administration of Insulin Lispro Injection via external insulin pumps, two open-label, crossover design studies were performed in patients with type 1 diabetes. One study involved 39 patients, ages 19 to 58 years, treated for 24 weeks with Insulin Lispro Injection or regular human insulin. After 12 weeks of treatment, the mean HbA1c values decreased from 7.8% to 7.2% in the Insulin Lispro Injection-treated patients and from 7.8% to 7.5% in the regular human insulin-treated patients. Another study involved 60 patients (mean age 39, range 15 to 58 years) treated for 24 weeks with either Insulin Lispro Injection or buffered regular human insulin. After 12 weeks of treatment, the mean HbA1c values decreased from 7.7% to 7.4% in the Insulin Lispro Injection-treated patients and remained unchanged from 7.7% in the buffered regular human insulin-treated patients. Rates of hypoglycemia were comparable between treatment groups in both studies.
14.5 Type 1 Diabetes – Pediatric Continuous Subcutaneous Insulin Infusion

A randomized, 16-week, open-label, parallel design, study of children and adolescents with type 1 diabetes (n=298) aged 4 to 18 years compared two subcutaneous infusion regimens administered via an external insulin pump: insulin aspart (n=198) or Insulin Lispro Injection (n=100). These two treatments resulted in comparable changes from baseline in HbA$_1$C and comparable rates of hypoglycemia after 16 weeks of treatment (see Table 8). Infusion site reactions were similar between groups.

Table 8: Pediatric Insulin Pump Study in Type 1 Diabetes (16 weeks; n=298)

<table>
<thead>
<tr>
<th></th>
<th>Insulin Lispro Injection</th>
<th>Aspart</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>100</td>
<td>198</td>
</tr>
<tr>
<td>Baseline HbA$_1$C (%)</td>
<td>8.2 ± 0.8</td>
<td>8.0 ± 0.9</td>
</tr>
<tr>
<td>Change from Baseline HbA$_1$C (%)</td>
<td>-0.1 ± 0.7</td>
<td>-0.1 ± 0.8</td>
</tr>
<tr>
<td>Treatment Difference in HbA$_1$C, Mean (95% confidence interval)</td>
<td>0.1 (-0.3, 0.1)</td>
<td></td>
</tr>
<tr>
<td>Baseline insulin dose (units/kg/24 hours)</td>
<td>0.9 ± 0.3</td>
<td>0.9 ± 0.3</td>
</tr>
<tr>
<td>End-of-Study insulin dose (units/kg/24 hours)</td>
<td>0.9 ± 0.2</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>Patients with severe hypoglycemia (n, %)</td>
<td>8 (8%)</td>
<td>19 (10%)</td>
</tr>
<tr>
<td>Diabetic ketoacidosis (n, %)</td>
<td>0 (0)</td>
<td>1 (0.5%)</td>
</tr>
<tr>
<td>Baseline body weight (kg)</td>
<td>55.5 ± 19.0</td>
<td>54.1 ± 19.7</td>
</tr>
<tr>
<td>Weight Change from baseline (kg)</td>
<td>1.6 ± 2.1</td>
<td>1.8 ± 2.1</td>
</tr>
</tbody>
</table>

* Values are Mean ± SD

* Severe hypoglycemia refers to hypoglycemia associated with central nervous system symptoms and requiring the intervention of another person or hospitalization.

16 HOW SUPPLIED/STORAGE AND HANDLING

16.1 How Supplied

Insulin Lispro Injection is a clear and colorless solution available as:

<table>
<thead>
<tr>
<th>Insulin Lispro Injection</th>
<th>Total Volume</th>
<th>Concentration</th>
<th>Total Units Available in Presentation</th>
<th>NDC Number</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-100 multiple-dose vial</td>
<td>10 mL</td>
<td>100 units/mL</td>
<td>1000 units</td>
<td>66733-773-01</td>
<td>1 vial</td>
</tr>
<tr>
<td>U-100 single-patient-use KwikPen</td>
<td>3 mL</td>
<td>100 units/mL</td>
<td>300 units</td>
<td>66733-822-59</td>
<td>5 pens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insulin Lispro Injection</th>
<th>Total Volume</th>
<th>Concentration</th>
<th>Total Units Available in Presentation</th>
<th>NDC Number</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-100 multiple-dose vial</td>
<td>10 mL</td>
<td>100 units/mL</td>
<td>1000 units</td>
<td>0002-7737-01</td>
<td>1 vial</td>
</tr>
<tr>
<td>U-100 single-patient-use KwikPen</td>
<td>3 mL</td>
<td>100 units/mL</td>
<td>300 units</td>
<td>0002-8222-59</td>
<td>5 pens</td>
</tr>
<tr>
<td>U-100 single-patient-use Junior KwikPen</td>
<td>3 mL</td>
<td>100 units/mL</td>
<td>300 units</td>
<td>0002-7752-05</td>
<td>5 pens</td>
</tr>
</tbody>
</table>

The Insulin Lispro Injection KwikPen dials in 1 unit increments. The Insulin Lispro Injection Junior KwikPen dials in 0.5 unit increments.

Each prefilled pen is for single-patient-use only. Insulin Lispro Injection prefilled pens must never be shared between patients, even if the needle is changed. Patients using Insulin Lispro Injection vials must never share needles or syringes with another person.

16.2 Storage and Handling

Dispense in the original sealed carton with the enclosed Instructions for Use.

Do not use after the expiration date.

Unopened Insulin Lispro Injection should be stored in a refrigerator (36° to 46°F [2° to 8°C]), but not in the freezer. Do not use Insulin Lispro Injection if it has been frozen. In-use Insulin Lispro Injection vials and Insulin Lispro Injection prefilled pens should be stored at room temperature, below 86°F (30°C) and must be used within 28 days or be discarded, even if they still contain Insulin Lispro Injection. Protect from direct heat and light. See table below:

<table>
<thead>
<tr>
<th>Not In-Use (Unopened) Room Temperature (Below 86°F [30°C])</th>
<th>Not In-Use (Unopened) Refrigerated</th>
<th>In-Use (Opened) Room Temperature, (Below 86°F [30°C])</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mL multiple-dose vial</td>
<td>28 days</td>
<td>28 days, refrigerated/room temperature.</td>
</tr>
<tr>
<td>3 mL single-dose vial</td>
<td>1000 units</td>
<td>300 units</td>
</tr>
<tr>
<td>3 mL single-patient-use KwikPen</td>
<td>300 units</td>
<td>300 units</td>
</tr>
<tr>
<td>3 mL single-patient-use Junior KwikPen</td>
<td>300 units</td>
<td>300 units</td>
</tr>
<tr>
<td>3 mL single-patient-use Junior KwikPen</td>
<td>300 units</td>
<td>300 units</td>
</tr>
</tbody>
</table>
3 mL single-patient-use Insulin Lispro Injection KwikPen | 28 days | Until expiration date | 28 days, Do not refrigerate.
---|---|---|---
3 mL single-patient-use Insulin Lispro Injection Junior KwikPen | 28 days | Until expiration date | 28 days, Do not refrigerate.

Use in an External Insulin Pump — Change the Insulin Lispro Injection in the reservoir at least every 7 days, change the infusion sets and the infusion set insertion site at least every 3 days or after exposure to temperatures that exceed 98.6°F (37°C).

Diluted Insulin Lispro Injection for Subcutaneous Injection — Diluted Insulin Lispro Injection may remain in patient use for 28 days when stored at 41°F (5°C) and for 14 days when stored at 86°F (30°C). Do not dilute Insulin Lispro Injection used in an external insulin pump.

16.3 Preparation and Handling

Diluted Insulin Lispro Injection for Subcutaneous Injection — Insulin Lispro Injection may be diluted with Sterile Diluent for Insulin Lispro Injection for subcutaneous injection. Diluting one part Insulin Lispro Injection to nine parts diluent will yield a concentration one-tenth that of Insulin Lispro Injection (equivalent to U-10). Diluting one part Insulin Lispro Injection to one part diluent will yield a concentration one-half that of Insulin Lispro Injection (equivalent to U-50).

16.4 Admixture for Intravenous Administration

Infusion bags prepared with Insulin Lispro Injection are stable when stored in a refrigerator (2° to 8°C [36° to 46°F]) for 48 hours and then may be used at room temperature for up to an additional 48 hours [see Dosage and Administration (2.2)].

17 PATIENT COUNSELING INFORMATION

Advertise the patient to read the FDA-approved patient labeling (Patient Information and Instructions for Use).

Never Share an Insulin Lispro Injection Prefilled Pen or Syringe Between Patients

Advertise patients that they must never share an Insulin Lispro Injection prefilled pen with another person, even if the needle is changed. Advise patients using Insulin Lispro Injection vials not to share needles or syringes with another person. Sharing poses a risk for transmission of blood-borne pathogens [see Warnings and Precautions (5.1)].

Hyperglycemia or Hypoglycemia

Instruct patients on self-management procedures including glucose monitoring, proper injection technique, and management of hypoglycemia and hyperglycemia, especially at initiation of Insulin Lispro Injection therapy. Instruct patients on handling of special situations such as intercurrent conditions (illness, stress, or emotional disturbances), an inadequate or skipped insulin dose, inadvertent administration of an increased insulin dose, inadequate food intake, and skipped meals. Instruct patients on the management of hypoglycemia.

Inform patients that their ability to concentrate and react may be impaired as a result of hypoglycemia. Advise patients who have frequent hypoglycemia or reduced or absent warning signs of hypoglycemia to use caution when driving or operating machinery [see Warnings and Precautions (5.3)].

Advise patients that changes in insulin regimen can predispose to hyperglycemia or hypoglycemia and that changes in insulin regimen should be made under close medical supervision [see Warnings and Precautions (5.2)].

Hypersensitivity Reactions

Advise patients that hypersensitivity reactions have occurred with Insulin Lispro Injection. Inform patients on the symptoms of hypersensitivity reactions [see Warnings and Precautions (5.5)].

Medication Errors

Instruct patients to always check the insulin label before each injection to avoid mix-ups between insulin products.

Instructions For Patients Using Continuous Subcutaneous Insulin Pumps

Patients using external pump infusion therapy should be trained appropriately.

The following insulin pumps have been tested in Insulin Lispro Injection clinical trials conducted by Eli Lilly and Company:

- Disetronic® H-Tron® plus V100, D-Tron® and D-Tronplus® with Disetronic Rapid infusion sets
- MiniMed® Models 506, 507 and 508 and Polyfin® infusion sets

Insulin Lispro Injection is recommended for use in pump systems suitable for insulin infusion such as MiniMed, Disetronic, and other equivalent pumps. Before using Insulin Lispro Injection in a pump system, read the pump label to make sure the pump is indicated for continuous delivery of fast-acting insulin. Insulin Lispro Injection is recommended for use in any reservoir and infusion sets that are compatible with insulin and the specific pump. Please see recommended reservoir and infusion sets in the pump manual.

To avoid insulin degradation, infusion set occlusion, and loss of the preservative (metacresol), insulin in the reservoir should be replaced at least every 7 days; infusion sets and infusion set insertion sites should be changed at least every 3 days.
Insulin exposed to temperatures higher than 98.6°F (37°C) should be discarded. The temperature of the insulin may exceed ambient temperature when the pump housing, cover, tubing or sport case is exposed to sunlight or radiant heat. Infusion sites that are erythematous, pruritic, or thickened should be reported to the healthcare professional, and a new site selected because continued infusion may increase the skin reaction or alter the absorption of Insulin Lispro Injection.

Pump or infusion set malfunctions or insulin degradation can lead to rapid hyperglycemia and ketosis. This is especially pertinent for rapid acting insulin analogs that are more rapidly absorbed through skin and have a shorter duration of action. Prompt identification and correction of the cause of hyperglycemia or ketosis is necessary. Problems include pump malfunction, infusion set occlusion, leakage, disconnection or kinking, and degraded insulin. Less commonly, hypoglycemia from pump malfunction may occur. If these problems cannot be promptly corrected, patients should resume therapy with subcutaneous insulin injection and contact their healthcare professionals [see Dosage and Administration (2.2) and How Supplied/Storage and Handling (16.2)].

KwikPen® is a trademark of Eli Lilly and Company.

1 Disetronic®, H-Tron®, D-Tron®, and D-Tronplus® are registered trademarks of Roche Diagnostics GmbH.
2 MiniMed® and Polyfin® are registered trademarks of MiniMed, Inc.

Other product and company names may be the trademarks of their respective owners.

Literature revised February 2020

Manufactured by Eli Lilly and Company Indianapolis, IN 46285, USA

Copyright © 1996, 2020, Eli Lilly and Company. All rights reserved.

LIS-0006-USPI-20200212